CIVL451

Methods of Soil Exploration
• Introduction
• Methods of investigation
• Methods of boring
• Soil samplers and sampling
• Location and number of pits and borings
• Penetration tests
• Borehole logs
• Geophysical methods
Introduction

• Soil exploration is a part of site investigation.
• Site investigation, in general deals with determining in general, the suitability of the site for the proposed construction.
Site Investigation
• Attempt at understanding the subsurface conditions such as:
 – Soil and rock profile
 – Geological features of the region
 – Position and variation of ground water table
 – Physical properties of soil and rock
 – Contamination, if any
 – General data of adjacent structures, hydrological data, topography, soil maps, seismicity, etc.
– To determine the type of foundation required for the proposed project at the site, i.e. shallow foundation or deep foundation.

– To make recommendations regarding the safe bearing capacity or pile load capacity.

– Ultimately, it is the subsoil that provides the ultimate support for the structures.
Failures
Leaning Tower of Pisa and Sinkholes
• The three important aspect are **planning, execution and report writing**.

• Planning
 – To minimize cost of explorations and yet give reliable data.
 – Decide on quantity and quality depending on type, size and importance of project and whether investigation is preliminary or detailed.
• **Execution**

 – Collection of disturbed and/or undisturbed samples of subsurface strata from field.

 – Conducting in-situ tests of subsurface material and obtaining properties directly or indirectly.

 – Study of ground water conditions and collection of sample for chemical analysis.

 – Geophysical exploration, if necessary.

 – Laboratory testing on samples
• Report writing
 – Description of site conditions – topographic features, hydraulic conditions, existing structures, etc. supplemented by plans/drawings.
 – Description of nature, type and importance of proposed construction
 – Description of field and lab tests carried out.
 – Analysis and discussion of data collected
 – Preparation of charts, tables, graphs, etc.
 – Calculations performed
 – Recommendations
A complete site investigation will consist of:

– Preliminary work
 • Collecting general information and already existing data such as study of geologic, seismic maps, etc. at or near site.
 • Study site history – if previously used as quarry, agricultural land, industrial unit, etc.

– Site Reconnaissance: Actual site inspection.
 • To judge general suitability
 • Decide exploration techniques
• Exploration
 – Preliminary Investigations: Exploratory borings or shallow test pits, representative sampling, geophysical investigations, etc.
 – Detailed Investigations: Deep boreholes, extensive sampling, in-situ testing, lab testing, etc.
 – Depth and spacing: In general, depth of investigation should be such that any/all strata that are likely to experience settlement or failure due to loading.
 – Spacing depends upon degree of variation of surface topography and subsurface strata in horizontal direction.
Methods of Investigation

• Test pits:
 – Permits visual inspection of subsurface conditions in natural state.
 – Max. depth limited to 5-6 m.
 – Especially useful for gravelly soil where boreholes may be difficult.
 – Sampling/testing done on exposed surfaces.
Stratigraphy and Findings

<table>
<thead>
<tr>
<th>Layer</th>
<th>Soil</th>
<th>Soil Colour</th>
<th>Finds</th>
<th>Chronology</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Sandy soil</td>
<td>Gray 7.5YR 5/1</td>
<td>Fill</td>
<td>1980s</td>
</tr>
<tr>
<td>L2</td>
<td>Sandy soil</td>
<td>Pinkish white 7.5YR 8/2</td>
<td>Fill</td>
<td>1980s</td>
</tr>
<tr>
<td>L3</td>
<td>Sandy soil</td>
<td>Reddish yellow 7.5YR 7/6</td>
<td>Fill</td>
<td>1980s</td>
</tr>
<tr>
<td>L4</td>
<td>Sandy soil</td>
<td>Gray 7.5YR 6/1</td>
<td>Fill</td>
<td>1980s</td>
</tr>
<tr>
<td>L5</td>
<td>Loamy soil</td>
<td>Reddish yellow 5YR 6/6</td>
<td>original decomposed soil</td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td>Loamy soil</td>
<td>Reddish yellow 5YR 6/8</td>
<td>original decomposed soil</td>
<td></td>
</tr>
<tr>
<td>L7</td>
<td>Loamy soil, with some decomposed bed rock texture</td>
<td>Light red 2.5YR 6/8</td>
<td>original decomposed soil</td>
<td></td>
</tr>
</tbody>
</table>

Test Pit Wall Photograph

Western Wall Section

![Test Pit Wall Photograph](image)

Test Pit Wall Drawing

Western Wall Section Drawing

![Test Pit Wall Drawing](image)
Methods of Boring

• Auger Borings
 – Simplest method of exploration and sampling.
 – Power driven or hand operated.
 – Max. depth 10 m
 – Suitable in all soils above GWT but only in cohesive soil below GWT
 – Hollow stem augers used for sampling or conducting Standard Penetration Tests.
Hand operated augers

Power driven augers
Methods of Boring

• Wash Boring:
 – A casing is driven with a drop hammer. A hollow drill rod with chopping bit is inserted inside the casing.
 – Soil is loosened and removed from the borehole using water or a drilling mud jetted under pressure.
 – The water is jetted in the hole through the bottom of a wash pipe and leaves the hole along with the loose soil, from the annual space between the hole and wash pipe.
 – The water reaches the ground level where the soil in suspension is allowed to settle and mud is re-circulated.
Methods of Boring

Another example of wash boring is called mud rotary drilling (soil) or core drilling (rock).

• Mud rotary
 – Hollow drill rods with a drill bit is rotated into the soil. Drilling mud is continuously pumped into the hole. The bit grinds the soil and the return flow brings the cuttings to the surface.

• Core drilling
 – Used for obtaining rock cores.
 – A core barrel is fitted with a drill bit is attached to hollow drill rods.
 – Examples: diamond coring, calyx or shot core drilling
Schematic for wash boring
Figure 11-1. Core-drilling equipment
Methods of Investigation

• Percussion drilling
 – Grinding the soil by repeated lifting and dropping of heavy chisels or drilling bits.
 – Water is added to form slurry of cuttings.
 – Slurry removed by bailers or pumps.

• In general, a machine used to drill holes is called a drill rig (generally power driven, but may be hand driven).

• A winch is provided to raise and lower the drilling tools into the hole.
Methods of Investigation

• Probing or sounding methods:
 – Drive a pipe or rod into the soil.
 – Measure the resistance offered by the soil. Ex. CPT, SPT, etc.

• Geophysical methods:
 – Seismic refraction method
 – Electrical resistivity method
 – Crosshole method